Algebra, Linear Algebra, and Numerical Analysis

by

George Nakos

USNA

Mathematics

http://www.nadn.navy.mil/Users/math/gcn/

gcn@usna.edu

1 Logarithms

$$\log_b x = c \iff x = b^c$$

The common logarithm is

$$\log\left(x\right) = \log_{10}\left(x\right)$$

The Naperian or natural logarithm is

$$\ln(x) = \log_e(x), \qquad e = 2.7183...$$

Also,

anti
$$\log(\log(x)) = x$$

1.1 Properties

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

$$\log_b(b^n) = n$$

$$\log_b(b) = 1$$

$$\log(1) = 0$$

$$\log(x^c) = c\log(x)$$

$$\log(xy) = \log(x) + \log(y)$$

$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$

1.2 Examples

Example 1 *Find* $\log_{10} (0.00001)$.

Solution: We have

$$\log_{10} (0.00001) = c \iff 10^{c} = 0.00001 = 10^{-5} \Rightarrow c = -5$$

Example 2 Find the common logarithm of 1000^4 .

Solution: We have

$$\log_{10} (1000^{4}) = \log_{10} ((10^{3})^{4})$$

$$= \log_{10} (10^{12})$$

$$= 12 \log_{10} (10)$$

$$= 12$$

Example 3 Find the Naperian logarithm of e^{1+x-y} .

Solution: We have

$$\ln (e^{1+x-y}) = (1+x-y)\ln (e) = 1+x-y$$

2 Complex Numbers

$$a+ib$$
, $i^2=-1$

2.1 Multiplication/Division/Conjugation

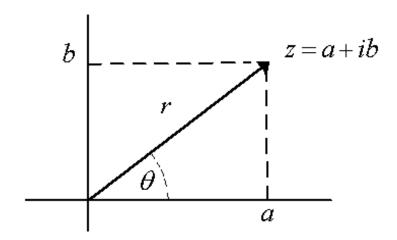
$$(a+ib) (c+id) = (ac-bd) + i (ad+bc)$$

$$\frac{a+ib}{c+id} = \frac{(a+ib) (c-id)}{(c+id) (c-id)} = \frac{ac+bd}{c^2+d^2} + i \frac{bc-ad}{c^2+d^2}$$

$$|z| = a^2 + b^2, \quad \overline{z} = a - ib$$

2.2 Polar Form

$$z = r\left(\cos\theta + i\sin\theta\right)$$



FE USNA/2004

Conversions

$$x = r \cos \theta, \quad y = r \sin \theta$$

$$r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1} \left(\frac{y}{r}\right)$$

Euler's Formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Multiplication/Division/Powers/Roots in Polar

$$z_1 z_2 = r_1 r_2 \left[\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2) \right]$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos (\theta_1 - \theta_2) + i \sin (\theta_1 - \theta_2) \right]$$

$$z^{n} = r^{n} \left[\cos \left(n\theta \right) + i \sin \left(n\theta \right) \right]$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \left(\frac{\theta}{n} + k \frac{360^0}{n} \right) + i \sin \left(\frac{\theta}{n} + k \frac{360^0}{n} \right) \right]$$

$$k = 0, \dots, n - 1$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$

2.3 Examples

Example 4 Find the polar form of z = 6 + 7i.

Solution: We have

$$r = \sqrt{6^2 + 7^2} = 9.2195$$

 $\theta = \arctan(7/6) = 0.86217 \text{ rad} = 49.40^\circ$
 $\Rightarrow z = 9.2195 (\cos(49.40^\circ) + i \sin(49.40^\circ))$

Example 5 Find $\sqrt[3]{1+i}$

Solution: We have

$$\sqrt[3]{1+i} = \sqrt[3]{2} \left[\cos \left(\frac{\pi/4 + 2k\pi}{3} \right) + i \sin \left(\frac{\pi/4 + 2k\pi}{3} \right) \right]$$

$$k = 0, \quad \sqrt[3]{2} \left[\cos \left(\frac{\pi/4}{3} \right) + i \sin \left(\frac{\pi/4}{3} \right) \right]$$

$$= 1.084215081 + 0.2905145554i$$

$$k = 1, \quad \sqrt[3]{2} \left[\cos \left(\frac{\pi/4 + 2\pi}{3} \right) + i \sin \left(\frac{\pi/4 + 2\pi}{3} \right) \right]$$

$$= -0.7937005260 + 0.7937005260i$$

$$k = 1, \quad \sqrt[3]{1^2 + 1^2} \left[\cos \left(\frac{\pi/4 + 4\pi}{3} \right) + i \sin \left(\frac{\pi/4 + 4\pi}{3} \right) \right]$$

$$= -0.2905145554 - 1.084215081i$$

3 Matrices

3.1 Operations

Addition: $A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$

Example 6

$$\begin{bmatrix} 1 & -3 & 0 \\ 2 & -4 & 7 \end{bmatrix} + \begin{bmatrix} 0 & 4 & 5 \\ -1 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 0 & 5 \end{bmatrix}$$

Scalar Multiplication: $cA = c [a_{ij}] = [ca_{ij}]$

Example 7

$$\begin{bmatrix}
1 & 0 \\
-3 & 4 \\
5 & -1
\end{bmatrix} = \begin{bmatrix}
2 & 0 \\
-6 & 8 \\
10 & -2
\end{bmatrix}$$

Matrix Multiplication: If $A_{m \times k}$, $B_{k \times n}$, then $(AB)_{m \times n}$

$$A = [a_{mn}], \quad B = [b_{rq}], \quad AB = [c_{ij}]$$

 $c_{ij} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ik} b_{kj}$

$$\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 4 \\ -2 & 4 & 5 \\ 0 & 3 & -2 \end{bmatrix} = \begin{bmatrix} 6 & 7 & 6 \\ 4 & 14 & 9 \end{bmatrix}$$

FE USNA/2004

Example 9

$$\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \begin{bmatrix} 5 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -15 & -3 & 3 \\ 20 & 4 & -4 \end{bmatrix}$$
$$\begin{bmatrix} 5 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} = [-2] \text{ So } AB \neq BA$$

3.2 Identity

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \dots, \quad I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$A_{m \times n} I_n = A_{m \times n} = I_m A_{m \times n}$$

3.3 Transpose

The transpose of $A = [a_{ij}]$, is $A^T = [a_{ji}]$.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \quad \begin{bmatrix} a & b & c & d \end{bmatrix}^T = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

3.4 Introduction to Determinants

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Example 11

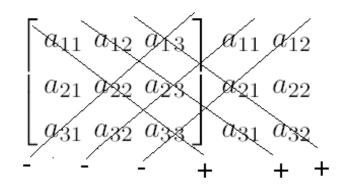
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & -2 \\ 0 & 2 & -1 \end{vmatrix} = 1 \begin{vmatrix} 0 & -2 \\ 2 & -1 \end{vmatrix} - 2 \begin{vmatrix} 1 & -2 \\ 0 & -1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix}$$
$$= 1 \cdot 4 - 2 \cdot (-1) + 0 \cdot 2$$
$$= 6$$

$$\begin{vmatrix} 1 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & -2 & -1 \end{vmatrix} = 1 \begin{vmatrix} 0 & 2 \\ -2 & -1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 2 \\ 0 & -1 \end{vmatrix} + 0 \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = 6$$

The Sarrus Scheme



$$a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32}$$

 $-a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$

Warning: This works only for 3×3 determinants!

3.5 Cofactors

The (i, j) minor

$$M_{ij}$$

of a square matrix A is the determinant obtained by deleting the ith row and the jth column.

The signed minor $(-1)^{i+j}M_{ij}$ is called the (i,j) **cofactor**, of A and is denoted by C_{ij} .

$$C_{ij} = (-1)^{i+j} M_{ij}$$

The signs $(-1)^{i+j}$ follow a checkerboard pattern of \pm 's

$$\begin{bmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The matrix of cofactors is $[C_{ij}]$

Example 13 The cofactors of
$$A = \begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix}$$
 are $M_{11} = \begin{vmatrix} 3 & -2 \\ 0 & 3 \end{vmatrix} = 9$ $C_{11} = (-1)^{1+1}M_{11} = 9$ $M_{12} = \begin{vmatrix} 4 & -2 \\ -5 & 3 \end{vmatrix} = 2$ $C_{12} = (-1)^{1+2}M_{12} = -1 \cdot 2 = -2$ $M_{13} = \begin{vmatrix} 4 & 3 \\ -5 & 0 \end{vmatrix} = 15$ $C_{13} = (-1)^{1+3}M_{13} = 15$ $M_{21} = \begin{vmatrix} 2 & 2 \\ 0 & 3 \end{vmatrix} = 6$ $C_{21} = (-1)^{2+1}M_{21} = -1 \cdot 6 = -6$ $M_{22} = \begin{vmatrix} -1 & 2 \\ -5 & 3 \end{vmatrix} = 7$ $C_{22} = (-1)^{2+2}M_{22} = 7$ $M_{23} = \begin{vmatrix} -1 & 2 \\ -5 & 0 \end{vmatrix} = 10$ $C_{23} = (-1)^{2+3}M_{23} = -1 \cdot 10 = -10$

$$M_{31} = \begin{vmatrix} 2 & 2 \\ 3 & -2 \end{vmatrix} = -10 \qquad C_{31} = (-1)^{3+1} M_{31} = -10$$

$$M_{32} = \begin{vmatrix} -1 & 2 \\ 4 & -2 \end{vmatrix} = -6 \qquad C_{32} = (-1)^{3+2} M_{32} = (-1)(-6) = 6$$

$$M_{33} = \begin{vmatrix} -1 & 2 \\ 4 & 3 \end{vmatrix} = -11 \qquad C_{33} = (-1)^{3+3} M_{33} = -11$$

Example 14 The matrix of cofactors of A in the previous example is

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} 9 & -2 & 15 \\ -6 & 7 & -10 \\ -10 & 6 & -11 \end{bmatrix}$$

3.6 Cofactor Expansion of Determinant

(1) Cofactor Expansion about the ith row The determinant of A can be expanded about the ith row in terms of the cofactors as follows.

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

(2) Cofactor Expansion about the jth column The determinant of A can be expanded about the jth column in terms of the cofactors as follows.

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

Example 15

$$\det A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= (-1)9 + 2(-2) + 2 \cdot 15 = 17$$

$$\det A = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

$$= 4(-6) + 3 \cdot 7 + (-2)(-10) = 17$$

$$\det A = a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33}$$

$$= (-5)(-10) + 0 \cdot 6 + 3(-11) = 17$$

$$\det A = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

$$= (-1)9 + 4(-6) + (-5)(-10) = 17$$

$$\det A = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

$$= 2(-2) + 3 \cdot 7 + 0 \cdot 6 = 17$$

$$\det A = a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33}$$

$$= 2 \cdot 15 + (-2)(-10) + 3(-11) = 17$$

3.7 Properties of Determinants

$$\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{vmatrix} = \begin{vmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{vmatrix}$$

$$\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{vmatrix} = - \begin{vmatrix}
b_1 & b_2 & b_3 \\
a_1 & a_2 & a_3 \\
c_1 & c_2 & c_3
\end{vmatrix}$$

(4)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ ka_1 + b_1 & ka_2 + b_2 & ka_3 + b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

(5)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ 0 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

(6)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

(7)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ ka_1 & ka_2 & ka_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

(8)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ ka_1 + lc_1 & ka_2 + lc_2 & ka_3 + lc_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

(9) Cauchy's Theorem

$$\det(AB) = \det(A)\det(B)$$

(10) For $A_{n \times n}$

$$\det\left(kA\right) = k^n \det\left(A\right)$$

3.8 The Adjoint

The transpose $[C_{ji}]$ of the cofactor matrix $[C_{ij}]$ of a square matrix A is the **adjoint of** A and it is denoted by Adj(A).

$$Adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

Example 16 Find the adjoint of A, where

$$A = \begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix}$$

Solution: In Example 14 we found the cofactors of A to be

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} = \begin{bmatrix} 9 & -2 & 15 \\ -6 & 7 & -10 \\ -10 & 6 & -11 \end{bmatrix}$$

Hence,

$$Adj(A) = [C_{ij}]^T = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} = \begin{bmatrix} 9 & -6 & -10 \\ -2 & 7 & 6 \\ 15 & -10 & -11 \end{bmatrix}$$

Basic Property

$$A \operatorname{Adj}(A) = \det(A) I_n = \operatorname{Adj}(A) A$$

3.9 The Inverse

An $n \times n$ matrix A is **invertible**, if there exists a matrix A^{-1} such that

$$AA^{-1} = I$$
 and $A^{-1}A = I$

In such case A^{-1} is called an **inverse** of A. If is a fact that if A^{-1} exists, it is unique.

If no inverse A^{-1} exists for A, then we say that A is **noninvertible**. Another name for invertible is **nonsingular** and another name for noninvertible is **singular**.

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $\det(A) = ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

BASIC FACTS

- (1) A is invertible if and only if $\det(A) \neq 0$
- (2) Let A be an invertible matrix. Then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{Adj}(A) \tag{1}$$

Example 17 Find A^{-1} , where A is as in Example 16.

$$A = \begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix}$$

Solution: We have

$$\det(A) = \begin{vmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{vmatrix} = 17$$

Hence, by Example 14, and (1)

$$A^{-1} = \frac{1}{\det(A)} \mathrm{Adj}(A)$$

$$= \frac{1}{17} \begin{bmatrix} 9 & -6 & -10 \\ -2 & 7 & 6 \\ 15 & -10 & -11 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{9}{17} & -\frac{6}{17} & -\frac{10}{17} \\ -\frac{2}{17} & \frac{7}{17} & \frac{6}{17} \\ \frac{15}{17} & -\frac{10}{17} & -\frac{11}{17} \end{bmatrix}$$

$$= \begin{bmatrix} 0.52941 & -0.35294 & -0.58824 \\ -0.11765 & 0.41176 & 0.35294 \\ 0.88235 & -0.58824 & -0.64706 \end{bmatrix}$$

Verification with small numerical error.

$$AA^{-1} = \begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0.52941 & -0.35294 & -0.58824 \\ -0.11765 & 0.41176 & 0.35294 \\ 0.88235 & -0.58824 & -0.64706 \end{bmatrix}$$

$$= \begin{bmatrix} 0.99999 & -0.00002 & 0 \\ -0.00001 & 1.0 & -0.00002 \\ 0 & -0.00002 & 1.0 \end{bmatrix}$$

4 Linear Systems

$$3x + 2y + z = 39$$
 $x_1 + x_2 = 5$ $y_1 + y_2 + y_3 = -2$
 $2x + 3y + z = 34$ $x_1 - 2x_2 = 6$ $y_1 - 2y_2 + 7y_3 = 6$
 $x + 2y + 3z = 26$ $-3x_1 + x_2 = 1$

4.1 Square Linear Systems

$$-x + 2y + 2z = -20$$
$$4x + 3y - 2z = -7$$
$$-5x + 3z = -24$$

or in matrix form $A\mathbf{x} = \mathbf{b}$

$$\begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -20 \\ -7 \\ -24 \end{bmatrix}$$

One way to solve is by using the inverse if it exists

$$A\mathbf{x} = \mathbf{b}$$

$$\Rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$\Rightarrow I\mathbf{x} = A^{-1}\mathbf{b}$$

$$\Rightarrow \mathbf{x} = A^{-1}\mathbf{b}$$

Example 18 Solve the system

$$-x + 2y + 2z = -20$$
$$4x + 3y - 2z = -7$$
$$-5x + 3z = -24$$

Solution: From Example 17, we have

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} \frac{9}{17} & -\frac{6}{17} & -\frac{10}{17} \\ -\frac{2}{17} & \frac{7}{17} & \frac{6}{17} \\ \frac{15}{17} & -\frac{10}{17} & -\frac{11}{17} \end{bmatrix} \begin{bmatrix} -20 \\ -7 \\ -24 \end{bmatrix} = \begin{bmatrix} 6 \\ -9 \\ 2 \end{bmatrix}$$

So

$$x = 6, \quad y = -9, \quad z = 2$$

Verification

$$\begin{bmatrix} -1 & 2 & 2 \\ 4 & 3 & -2 \\ -5 & 0 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ -9 \\ 2 \end{bmatrix} = \begin{bmatrix} -20 \\ -7 \\ -24 \end{bmatrix}$$

4.1 Cramer's Rule

Let $A\mathbf{x} = \mathbf{b}$ be a square system, with

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Let A_i denote the matrix obtained from A by replacing the ith column with \mathbf{b} .

$$A_i = \begin{bmatrix} a_{11} & \cdots & a_{1,i-1} & b_1 & a_{1,i+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,i-1} & b_n & a_{n,i+1} & \cdots & a_{nn} \end{bmatrix}$$

Cramer's Rule gives *an explicit formula* for the solution of a consistent square system.

Theorem 1 (Cramer's Rule) If $det(A) \neq 0$, then the system

$$A\mathbf{x} = \mathbf{b}$$

has a unique solution $\mathbf{x} = (x_1, \dots, x_n)$ given by

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \quad \dots, \quad x_n = \frac{\det(A_n)}{\det(A)}$$

Example 19 Use Cramer's Rule to solve the system.

$$x_1 + x_2 - x_3 = 2$$

$$x_1 - x_2 + x_3 = 3$$

$$-x_1 + x_2 + x_3 = 4$$

Solution: We compute the determinant of the coefficient matrix A and the determinants of

$$A_{1} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -1 & 1 \\ 4 & 1 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 1 \\ -1 & 4 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 3 \\ -1 & 1 & 4 \end{bmatrix}$$

to get $\det(A) = -4$, $\det(A_1) = -10$, $\det(A_2) = -12$, $\det(A_3) = -14$. Hence,

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{5}{2}, \quad x_2 = \frac{\det(A_2)}{\det(A)} = 3, \quad x_3 = \frac{\det(A_3)}{\det(A)} = \frac{7}{2}$$

Example 20 Use Cramer's Rule to find the solution to the general linear system, if $a_{11}a_{22} - a_{12}a_{21} \neq 0$.

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

Solution: Since $|A| = a_{11}a_{22} - a_{12}a_{21} \neq 0$, we have

$$x_1 = \frac{|A_1|}{|A|} = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}}, \quad x_2 = \frac{|A_2|}{|A|} = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}}$$

5 Vectors

Vector addition $\mathbf{a} + \mathbf{b}$

Example 21

$$\begin{bmatrix} -1\\2\\4 \end{bmatrix} + \begin{bmatrix} 9\\-7\\-13 \end{bmatrix} = \begin{bmatrix} 8\\-5\\-9 \end{bmatrix}$$

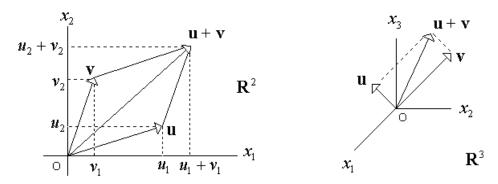


Fig.: The parallelogram law for vector addition.

Scalar multiplication $c\mathbf{a}$

$$5 \begin{bmatrix} 8 \\ -3 \\ 7 \end{bmatrix} = \begin{bmatrix} 40 \\ -15 \\ 35 \end{bmatrix}$$

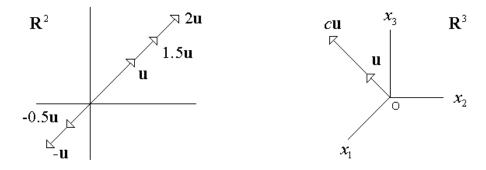


Fig. : Scalar products.

The standard basis vectors in \mathbb{R}^2 and \mathbb{R}^3 are denoted by \mathbf{i}, \mathbf{j} and $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and

$$\mathbf{i} = \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{j} = \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{k} = \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

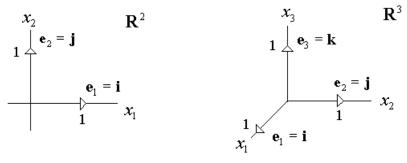


Fig.: Standard basis vectors in \mathbb{R}^2 and in \mathbb{R}^3 .

Every 3-vector can be written in terms of i, j, k.

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

5.1 Dot Vector Product

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \\ = u_1 v_1 + \dots + u_n v_n$$

Example 23

$$\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix} = (-3)4 + 2(-1) + (1)(5) = -9$$

The **norm**, or **length**, or **magnitude** of an n-vector \mathbf{u} is the positive square root

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \left(u_1^2 + \dots + u_n^2\right)^{\frac{1}{2}}$$

The (**Euclidean**) distance between two n-vectors \mathbf{u} and \mathbf{v} is

$$\|\mathbf{u} - \mathbf{v}\|$$

A n-vector is a **unit** vector, if its norm is 1.

Example 24 Let

$$\mathbf{v} = \begin{bmatrix} 1\\2\\-3\\1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} \frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\-\frac{1}{2} \end{bmatrix}$$

- (a) Find the length of v.
- (b) Find the distance between v and u.
- (c) Is u a unit vector?

Solution: We have

(a)
$$\|\mathbf{v}\| = \left(1^2 + 2^2 + (-3)^2 + 1^2\right)^{\frac{1}{2}} = \sqrt{15}$$

(b)
$$\|\mathbf{v} - \mathbf{u}\| = \|(\frac{1}{2}, \frac{5}{2}, -\frac{7}{2}, \frac{3}{2})\| = \sqrt{21}$$

(c)
$$\|\mathbf{u}\| = \|(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})\| = 1$$
. So, \mathbf{u} is a unit vector.

Basic Property

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{2}$$

Example 25 Orthogonal vectors.

$$\begin{bmatrix} -3\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} -2\\1\\-8 \end{bmatrix} = 0 \Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2} = 90^{\circ}$$

5.1 Orthogonal Projections

Let u and v be given nonzero vectors. We want to write u as

$$\mathbf{u} = \mathbf{u}_{\mathrm{pr}} + \mathbf{u}_{\mathrm{c}}$$

where \mathbf{u}_{pr} is a scalar multiple of \mathbf{v} and \mathbf{u}_{c} is orthogonal to \mathbf{u}_{pr} (Fig. 4). This is always possible and such decomposition is unique.

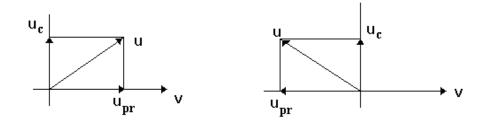


Fig. 4: The orthogonal projection of u on v.

We have

$$\mathbf{u}_{\mathrm{pr}} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$
 orthogonal projection of \mathbf{u} on \mathbf{v} (3)

and

$$\mathbf{u}_{c} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$
 vector component of \mathbf{u} orthogonal to \mathbf{v} (4)

Example 26 Let $\mathbf{u} = (1, 1, 1)$ and $\mathbf{v} = (2, 2, 0)$. Find the orthogonal projection \mathbf{u}_{pr} of \mathbf{u} on \mathbf{v} and the vector component \mathbf{u}_{c} of \mathbf{u} orthogonal to \mathbf{v} .

Solution: We have

$$\mathbf{u}_{pr} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{(1, 1, 1) \cdot (2, 2, 0)}{(2, 2, 0) \cdot (2, 2, 0)} (2, 2, 0)$$
$$= \frac{4}{8} (2, 2, 0) = (1, 1, 0)$$

and

$$\mathbf{u}_{c} = \mathbf{u} - \mathbf{u}_{pr} = (1, 1, 1) - (1, 1, 0) = (0, 0, 1)$$

The answer is geometrically obvious as we see in Fig. Ex. 26.

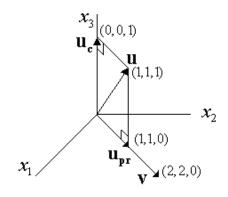


Fig. Ex. 26: Projecting (1, 1, 1) on (2, 2, 0).

5.2 Cross Vector Product

The **cross product** $\mathbf{u} \times \mathbf{v}$ is the *vector* with components

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = (u_2 v_3 - u_3 v_2, \ u_3 v_1 - u_1 v_3, \ u_1 v_2 - u_2 v_1)$$

This may also be expressed in determinant notation

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Example 27 Find the cross product

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$

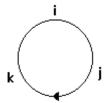
Solution:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ 1 & -2 & -1 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ -2 & -1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} \mathbf{k}$$
$$= 7\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$$
$$= \begin{bmatrix} 7 \\ 5 \\ -3 \end{bmatrix}$$

Note that

$$egin{aligned} \mathbf{i} imes \mathbf{j} &= \mathbf{k} & \mathbf{j} imes \mathbf{i} &= -\mathbf{k} \\ \mathbf{j} imes \mathbf{k} &= \mathbf{i} & \mathbf{k} imes \mathbf{j} &= -\mathbf{i} \\ \mathbf{k} imes \mathbf{i} &= \mathbf{j} & \mathbf{i} imes \mathbf{k} &= -\mathbf{j} \end{aligned}$$

As we move clockwise the cross product of two vectors gives the third. As we move counterclockwise the cross product of two vectors gives the opposite of the third.



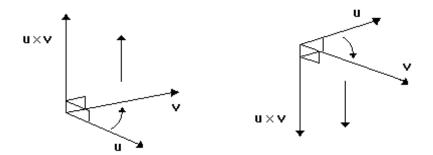
Note that

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$
 and $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$

So, $\mathbf{u} \times \mathbf{v}$ is *orthogonal* to \mathbf{u} and \mathbf{v} .

$$\mathbf{u} \perp (\mathbf{u} \times \mathbf{v})$$
 and $\mathbf{v} \perp (\mathbf{u} \times \mathbf{v})$

If \mathbf{u} and \mathbf{v} are nonzero vectors then the direction of $\mathbf{u} \times \mathbf{v}$ is perpendicular to the plane defined by \mathbf{u} and \mathbf{v} . Furthermore, it can be shown that for a right-handed coordinate system the vectors \mathbf{u} , \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ form also a right-handed system. This determines the direction of the cross product. Next, we determine its length.



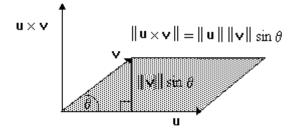
Direction of the cross product for a right-handed system.

Basic Property

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

Geometrically, this length is the area of the parallelogram defined by ${\bf u}$ and ${\bf v}$. Hence the area, A, of the parallelogram with adjacent sides ${\bf u}$ and ${\bf v}$ is

$$A = \|\mathbf{u} \times \mathbf{v}\|$$



5.3 Applications of the Cross Product to Geometry

Example 28 (Area of Parallelogram) Compute the area of the parallelogram with adjacent sides PQ and PR, where P(2,1,0), Q(1,-2,1) and R(-2,2,4).

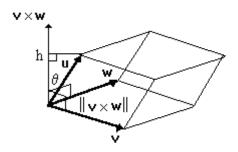
Solution:

$$\|\overrightarrow{PQ} \times \overrightarrow{PR}\| = \|(-1, -3, 1) \times (-4, 1, 4)\|$$
$$= \|(-13, 0, -13)\| = 13\sqrt{2}$$

Example 29 (Area of Triangle) Compute the area of the triangle with vertices the tips of **i**, **j** and **k**.

Solution: $\mathbf{j} - \mathbf{i}$ and $\mathbf{k} - \mathbf{i}$ are two sides of the triangle. Therefore, $\|(\mathbf{j} - \mathbf{i}) \times (\mathbf{k} - \mathbf{i})\|$ is the area of the parallelogram defined by these sides. One—half of that is the area of the triangle.

$$\frac{1}{2} \| (\mathbf{j} - \mathbf{i}) \times (\mathbf{k} - \mathbf{i}) \| = \frac{1}{2} \| (-1, 1, 0) \times (-1, 0, 1) \|$$
$$= \frac{1}{2} \| (1, 1, 1) \| = \frac{1}{2} \sqrt{3}$$



Theorem 2 (Volume of Parallelepiped) The volume V of the parallelepiped with adjacent sides the position vectors \mathbf{u} , \mathbf{v} and \mathbf{w} is given by

$$V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = \pm \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$
 (5)

Example 30 Compute the volume of the parallelepiped with adjacent sides the position vectors $\mathbf{u} = (1, -1, 2)$, $\mathbf{v} = (0, 2, 1)$ and $\mathbf{w} = (3, -2, -1)$.

Solution: We have,

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 3 & -2 & -1 \end{vmatrix} = -15$$

Hence, the volume V of the parallelepiped is $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = |-15| = 15$.

6 Series

6.1 Operations

Addition

$$\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n)$$

Scalar Multiplication

$$c\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (ca_n)$$

Series Multiplication

$$\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} c_n$$

$$c_n = \sum_{i=1}^{n-1} a_i b_{n-i}$$

$$c_n = a_1 b_{n-1} + a_2 b_{n-2} + \dots + a_{n-1} b_1$$

6.2 The Geometric Series

$$a + ar + ar^{2} + \dots + ar^{n} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
$$= \sum_{n=0}^{\infty} r^{n}$$
$$= a \sum_{n=0}^{\infty} r^{n}$$

A geometric series converges to the number $\frac{a}{1-r}$, if and only if |r|<1.

$$a + ar + ar^{2} + \dots + ar^{n} + \dots = \frac{a}{1 - r}, \qquad |r| < 1$$

The geometric series is detected by checking in

$$\sum_{n=1}^{\infty} a_n$$

the equality of the ratios

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \cdots$$

If these relations hold then the series is geometric with

$$a = a_1, \quad r = \frac{a_2}{a_1}$$

Example 31 Compute the infinite sum.

$$3 - \frac{15}{8} + \frac{75}{64} - \frac{375}{512} + \cdots$$

Solution: Because

$$\frac{-\frac{15}{8}}{3} = \frac{\frac{75}{64}}{-\frac{15}{8}} = \frac{-\frac{375}{512}}{\frac{75}{64}} = \dots = -\frac{5}{8}$$

The series is geometric with $r = -\frac{5}{8}$ and a = 3. So it converges

FE USNA/2004

to

$$\frac{a}{1-r} = \frac{3}{1-\left(-\frac{5}{8}\right)} = \frac{24}{13}$$

Example 32 Write the following number as a rational number (quotient of two integers).

Solution:

$$1.222222... = 1 + \frac{2}{10} + \frac{2}{10^2} + \frac{2}{10^3} + \frac{2}{10^4} + \cdots$$
$$= 1 + \frac{\frac{2}{10}}{1 - \frac{1}{10}}$$
$$= \frac{11}{9}$$

6.3 Taylor Series

$$f(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \cdots$$
$$+ \frac{f^{(n)}(a)}{n!} (x - a)^n + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

If a = 0 we have Maclaurin Series

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Example 33 Find the Maclaurin series for $\sin(x)$.

Solution:

$$f(x) = \sin(x) f(0) = 0$$

$$f'(x) = \cos(x) f'(0) = 1$$

$$f''(x) = -\sin(x) f''(0) = 0$$

$$f'''(x) = -\cos(x) f'''(0) = -1$$

$$f^{(4)}(x) = \sin(x) f^{(4)}(0) = 0$$

$$\vdots \vdots \vdots$$

The coefficients are

$$0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1 \dots$$

So we have

$$\sin(x) = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!}x^5 + \frac{0}{6!}x^6 \cdots$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$$

7 Numerical Methods

7.1 Bisection Method

Finding roots of functions iteratively:

Start with a function f(x) and two points L_0 and R_0 such that $f(L_0)$ and $f(R_0)$ have opposite signs.

For $n=0,1,2,\ldots$, perform the following steps until sufficient accuracy is achieved.

- (1) Set $m = \frac{1}{2}(L_n + R_n)$
- (2) find f(m)
- (3) If $f(L_n) f(m) \leq 0$, set $L_{n+1} = L_n$ and $R_{n+1} = m$. Otherwise set $L_{n+1} = m$ and $R_{n+1} = R_n$.
- (4) f(x) has at least one root in the interval (L_{n+1}, R_{n+1}) . The estimated value of the root is x^*

$$x^* = \frac{1}{2} \left(L_{n+1} + R_{n+1} \right)$$

The maximum error is

$$\frac{1}{2}(R_{n+1} - L_{n+1})$$

Example 34 Use two iterations of the Bisection method to find a root of

$$f\left(x\right) = x^3 - 2x - 7$$

Solution: The first step is to find L_0 and R_0 such that $f(L_0)$, $f(R_0)$ have opposite signs. A table of values of f(x) for random values of x is

f(x) changes sign between x=2 and x=3. $L_0=2$ and $R_0=3$.

First iteration, n = 0

$$m = \frac{1}{2}(2+3) = 2.5$$

$$f(2.5) = (2.5)^3 - 2(2.5) - 7 = 3.625$$

Since f(2.5) > 0, a root must exist in (2, 2.5). At this point the best estimate of the root is

$$x^* = \frac{1}{2}(2+2.5) = 2.25$$

and maximum error

$$\frac{1}{2}(2.5 - 2) = 0.25$$

Second iteration, n = 1

$$m = \frac{1}{2}(2+2.5) = 2.25$$

$$f(2.5) = (2.25)^3 - 2(2.25) - 7 = -0.1094$$

Since f(2.25) < 0, a root must exist in (2.25, 2.5). At this point the best estimate of the root is

$$x^* = \frac{1}{2}(2.5 + 2.25) = 2.2.375$$

and maximum error

$$\frac{1}{2}(2.5 - 2.25) = 0.125$$

7.2 Newton's Method

Finding roots of functions iteratively:

Start with a function f(x) and a fist guess x_0 for a root. Then for $n = 0, 1, 2, \ldots$ perform the iteration

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example 35 Use two iterations of Newton's method to find a root of

$$f\left(x\right) = x^3 - 2x - 7$$

Solution: We start with $x_0 = 2$.

$$f'(x) = 3x^2 - 2$$

First iteration, n = 0

$$x_{0} = 2$$

$$f(2) = (2)^{3} - 2(2) - 7 = -3$$

$$f'(2) = 3(2)^{2} - 2 = 10$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} = 2 - \frac{-3}{10} = 2.3$$

Second iteration, n = 1

$$x_{1} = 2.3$$

$$f(2) = (2.3)^{3} - 2(2.3) - 7 = 0.567$$

$$f'(2) = 3(2.3)^{2} - 2 = 13.87$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = 2.3 - \frac{0.567}{13.87} = 2.259$$

7.3 Euler's Method

Euler's method is used to approximate solution to first order initial value problem (IVP).

$$\frac{dx}{dt} = f(t, x), \quad y(t_0) = x_0$$

The iterations for step size Δt are

$$t_{n+1} = t_n + \Delta t$$

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

Example 36 Approximate x(1.5) with step size $\Delta t = 0.25$ for the IVP

$$\frac{dx}{dt} = 2x, \quad x(1) = 1$$

Solution: We have

$$x_{n+1} = x_n + \Delta t * f(t_n, x_n)$$

$$x_1 = x_0 + \Delta t (2x_0) = 1 + (0.25)(2(1)) = 1.5$$

$$t_1 = t_0 + \Delta t = 1 + 0.25 = 1.25$$

and iterate again

$$x_2 = x_1 + \Delta t (2x_1) = 1.5 + (0.25) (2 (1.5)) = 2.25$$

So in two steps

$$x(1.5) \simeq 2.25$$